3.522 \(\int \frac{A+B \tan (c+d x)}{\sqrt{\cot (c+d x)} (a+i a \tan (c+d x))} \, dx\)

Optimal. Leaf size=237 \[ \frac{(-B+i A) \sqrt{\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} a d}+\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} a d} \]

[Out]

((1/4 - I/4)*(A + (2 - I)*B)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*a*d) - ((1/4 - I/4)*(A + (2 - I)
*B)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*a*d) + ((I*A - B)*Sqrt[Cot[c + d*x]])/(2*d*(I*a + a*Cot[c
 + d*x])) + ((1/8 + I/8)*(A - (2 + I)*B)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(Sqrt[2]*a*d) - (
(1/8 + I/8)*(A - (2 + I)*B)*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(Sqrt[2]*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.390393, antiderivative size = 237, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {3581, 3596, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac{(-B+i A) \sqrt{\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} a d}+\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} a d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])),x]

[Out]

((1/4 - I/4)*(A + (2 - I)*B)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*a*d) - ((1/4 - I/4)*(A + (2 - I)
*B)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*a*d) + ((I*A - B)*Sqrt[Cot[c + d*x]])/(2*d*(I*a + a*Cot[c
 + d*x])) + ((1/8 + I/8)*(A - (2 + I)*B)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(Sqrt[2]*a*d) - (
(1/8 + I/8)*(A - (2 + I)*B)*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(Sqrt[2]*a*d)

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{A+B \tan (c+d x)}{\sqrt{\cot (c+d x)} (a+i a \tan (c+d x))} \, dx &=\int \frac{B+A \cot (c+d x)}{\sqrt{\cot (c+d x)} (i a+a \cot (c+d x))} \, dx\\ &=\frac{(i A-B) \sqrt{\cot (c+d x)}}{2 d (i a+a \cot (c+d x))}+\frac{\int \frac{\frac{1}{2} a (A-3 i B)-\frac{1}{2} a (i A-B) \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx}{2 a^2}\\ &=\frac{(i A-B) \sqrt{\cot (c+d x)}}{2 d (i a+a \cot (c+d x))}+\frac{\operatorname{Subst}\left (\int \frac{-\frac{1}{2} a (A-3 i B)+\frac{1}{2} a (i A-B) x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{a^2 d}\\ &=\frac{(i A-B) \sqrt{\cot (c+d x)}}{2 d (i a+a \cot (c+d x))}+-\frac{\left (\left (\frac{1}{4}+\frac{i}{4}\right ) (A-(2+i) B)\right ) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{a d}+-\frac{\left (\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B)\right ) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{a d}\\ &=\frac{(i A-B) \sqrt{\cot (c+d x)}}{2 d (i a+a \cot (c+d x))}+\frac{\left (\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\sqrt{2} a d}+\frac{\left (\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\sqrt{2} a d}+-\frac{\left (\left (\frac{1}{8}-\frac{i}{8}\right ) (A+(2-i) B)\right ) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{a d}+-\frac{\left (\left (\frac{1}{8}-\frac{i}{8}\right ) (A+(2-i) B)\right ) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{a d}\\ &=\frac{(i A-B) \sqrt{\cot (c+d x)}}{2 d (i a+a \cot (c+d x))}+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{\sqrt{2} a d}+-\frac{\left (\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} a d}+\frac{\left (\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} a d}\\ &=\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (A+(2-i) B) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} a d}+\frac{(i A-B) \sqrt{\cot (c+d x)}}{2 d (i a+a \cot (c+d x))}+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{\sqrt{2} a d}-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (A-(2+i) B) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{\sqrt{2} a d}\\ \end{align*}

Mathematica [A]  time = 1.97698, size = 198, normalized size = 0.84 \[ \frac{(\cos (d x)+i \sin (d x)) (A+B \tan (c+d x)) \left (4 (A+i B) \cos (c+d x) (\sin (d x)+i \cos (d x))+(1+i) (-\sin (c)+i \cos (c)) \sqrt{\sin (2 (c+d x))} \csc (c+d x) \left ((A+(2-i) B) \sin ^{-1}(\cos (c+d x)-\sin (c+d x))+i (A-(2+i) B) \log \left (\sin (c+d x)+\sqrt{\sin (2 (c+d x))}+\cos (c+d x)\right )\right )\right )}{8 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x)) (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])),x]

[Out]

((Cos[d*x] + I*Sin[d*x])*(4*(A + I*B)*Cos[c + d*x]*(I*Cos[d*x] + Sin[d*x]) + (1 + I)*Csc[c + d*x]*((A + (2 - I
)*B)*ArcSin[Cos[c + d*x] - Sin[c + d*x]] + I*(A - (2 + I)*B)*Log[Cos[c + d*x] + Sin[c + d*x] + Sqrt[Sin[2*(c +
 d*x)]]])*(I*Cos[c] - Sin[c])*Sqrt[Sin[2*(c + d*x)]])*(A + B*Tan[c + d*x]))/(8*d*Sqrt[Cot[c + d*x]]*(A*Cos[c +
 d*x] + B*Sin[c + d*x])*(a + I*a*Tan[c + d*x]))

________________________________________________________________________________________

Maple [C]  time = 0.398, size = 2963, normalized size = 12.5 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)),x)

[Out]

1/4/a/d*2^(1/2)*(cos(d*x+c)-1)*(2*I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))
^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d
*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))-2*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c
))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin
(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))-B*cos(d*x+c)^2*2^(1/2)+B*cos(d*x+c)*2^(1/2)-2*B*((cos(d*x+c)-1+sin(d*x+c
))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticP
i((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)+I*A*((cos(d*x+c)-
1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2
)*cos(d*x+c)*sin(d*x+c)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-B*cos(
d*x+c)^2*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*
x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+A*((co
s(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x
+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-I*A*((cos(d*x+c)-1)/sin(d*x+c)
)^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)*
sin(d*x+c)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-2*I*B*((cos(d*x+c)-1)/sin(d*x+
c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c
)*sin(d*x+c)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))-I*B*((cos(d*x+c)-
1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2
)*cos(d*x+c)*sin(d*x+c)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-I*B*((
cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d
*x+c))^(1/2)*cos(d*x+c)^2*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-I*B*((cos(d*x+c
)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1
/2)*cos(d*x+c)^2*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-I*A*((cos(d*x
+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^
(1/2)*cos(d*x+c)^2*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+I*A*2^(1/2)
*cos(d*x+c)^2-I*A*2^(1/2)*cos(d*x+c)+I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+
c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/
2),1/2+1/2*I,1/2*2^(1/2))+I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(
-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/
2))-A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c
))/sin(d*x+c))^(1/2)*cos(d*x+c)^2*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))+A*cos(d
*x+c)*sin(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((
cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2)
)+B*cos(d*x+c)*sin(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))
^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/
2*2^(1/2))+2*B*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((co
s(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))-
A*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/s
in(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+I*B*(-(cos(d*
x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^
(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+A*cos(d*x+c)^2*((cos(d*x
+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^
(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+B*((cos(d*x+c)-1+sin(d*x
+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*Ellipti
cPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-2*I*B*(-(cos(d*x+c)-1-sin(d*x+c))/sin
(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(co
s(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))+B*cos(d*x+c)*sin(d*x+c)*((cos(d*x+c)-1+sin(d*x
+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin
(d*x+c))^(1/2),1/2*2^(1/2))*((cos(d*x+c)-1)/sin(d*x+c))^(1/2))*(cos(d*x+c)+1)^2/(I*sin(d*x+c)+cos(d*x+c))/(cos
(d*x+c)/sin(d*x+c))^(1/2)/sin(d*x+c)^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.58725, size = 1497, normalized size = 6.32 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/8*(a*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2))*e^(2*I*d*x + 2*I*c)*log(1/2*((4*I*a*d*e^(2*I*d*x + 2*I*c) -
4*I*a*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2)) -
 4*(A - I*B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) - a*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2)
)*e^(2*I*d*x + 2*I*c)*log(1/2*((-4*I*a*d*e^(2*I*d*x + 2*I*c) + 4*I*a*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2
*I*d*x + 2*I*c) - 1))*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2)) - 4*(A - I*B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x -
 2*I*c)/(I*A + B)) + 2*a*d*sqrt(I*B^2/(a^2*d^2))*e^(2*I*d*x + 2*I*c)*log(-((a*d*e^(2*I*d*x + 2*I*c) - a*d)*sqr
t((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(I*B^2/(a^2*d^2)) + B)*e^(-2*I*d*x - 2*I*c)/(a*d)
) - 2*a*d*sqrt(I*B^2/(a^2*d^2))*e^(2*I*d*x + 2*I*c)*log(((a*d*e^(2*I*d*x + 2*I*c) - a*d)*sqrt((I*e^(2*I*d*x +
2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(I*B^2/(a^2*d^2)) - B)*e^(-2*I*d*x - 2*I*c)/(a*d)) - 2*((A + I*B)*e
^(2*I*d*x + 2*I*c) - A - I*B)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c
)/(a*d)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)**(1/2)/(a+I*a*tan(d*x+c)),x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \tan \left (d x + c\right ) + A}{{\left (i \, a \tan \left (d x + c\right ) + a\right )} \sqrt{\cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)/((I*a*tan(d*x + c) + a)*sqrt(cot(d*x + c))), x)